A Strong Symmetry Property of Eisenstein Series

نویسنده

  • BERNHARD HEIM
چکیده

Eisenstein series play a critical role in number theory. For two hundred years they have been an essential tool in the analysis of automorphic L-functions and in studying properties of quadratic forms in one and several variables. The construction is clear and straightforward, while their properties are sometimes very surprising. The arithmetic of their Fourier coefficients, and their analytic properties are still not completely understood. There are many connections with the Riemann hypothesis and other famous unsolved problems in number theory. Eisenstein series are named after Ferdinand Gotthold Eisenstein (1823 1852). Let k be an even integer larger than 2 and let τ be in the upper complex half-space. One of the simplest Eisenstein series is defined by

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Inner Product of Truncated Eisenstein Series

Introduction . . . . . . . . . $ 1. The problem . . . . . . . . . $2. Residues of cuspidal Eisenstein series 83. Exponents . . . . . . . . . $4. A comparison between two groups . $5. A property of the truncation operator $6. The constant terms of Eisenstein series $7. The negative dual chamber . . . . $8. Coefficients of the zero exponents . . $9. Conclusion . . . . . . . . . Bibliography . . ....

متن کامل

Transition: Eisenstein series on adele groups

[1] Despite contrary assertions in the literature, rewriting Eisenstein series, as opposed to more general automorphic forms, on adele groups does not use Strong Approximation. Strong Approximation does make precise the relation between general automorphic forms on adele groups and automorphic forms on SL2 and even on SLn, but rewriting these Eisenstein series does not need this comparison. Ind...

متن کامل

Transition exercise on Eisenstein series

[1] Despite occasional contrary assertions in the literature, rewriting Eisenstein series, as opposed to more general automorphic forms, to make sense on adele groups is not about Strong Approximation. Strong Approximation does make precise the relation between general automorphic forms on adele groups and automorphic forms on SLn, but rewriting these Eisenstein series does not need this compar...

متن کامل

Derivatives of Eisenstein series and Faltings heights

In a series of papers, [25], [30], [28], [29], [31], [26], we showed that certain quantities from the arithmetic geometry of Shimura varieties associated to orthogonal groups occur in the Fourier coefficients of the derivative of suitable Siegel-Eisenstein series. It was essential in these examples that this derivative was the second term in the Laurent expansion of a Siegel-Eisenstein series a...

متن کامل

AND GENERATING FUNCTIONS FOR ARITHMETIC CYCLES by Stephen

The classical formula of Siegel and Weil identifies the values of Siegel–Eisenstein series at certain critical points as integrals of theta functions. When the critical point is the center of symmetry for the functional equation, the Fourier coefficients of the values of the ‘even’ Siegel–Eisenstein series thus contain arithmetic information about the representations of quadratic forms. It is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008